Projekt 3D Digitales Landschaftsmodell (3D-DLM) am Runden Tisch GIS e.V.

Abschlussbericht (Demonstrationsphase):
Datenvorverarbeitung, Anwendung des 3Dfiers, Abbildung auf CityGML-Datenmodell, Bereitstellung der Ergebnisdaten & Qualitätsbewertung

Autoren:
Georg Fiutak (M.O.S.S. Computer Grafik Systeme GmbH)
Caroline Marx (TU München - Lehrstuhl für Geoinformatik)
Philipp Willkomm (M.O.S.S. Computer Grafik Systeme GmbH)
Andreas Donaubauer (TU München - Lehrstuhl für Geoinformatik)

März 2018
Inhaltsverzeichnis

1 Einführung .. 5
1.1 Projektbeteiligte und Projektphasen .. 5
1.2 Ziel der Demonstrationsphase ... 7
1.3 Testgebiet .. 8

2 Semantisches 3D-Landschaftsmodell – Mehrwert ... 9

3 Vorverarbeitung der Daten ... 13
 3.1 Herausforderungen ... 13
 3.2 Allgemeines Vorgehen .. 14
 3.3 Betrachtung der einzelnen Objektarten ... 14
 3.3.1 BUILDING ... 14
 3.3.2 BRIDGE ... 15
 3.3.3 ROAD ... 16
 3.3.4 WATER .. 17
 3.3.5 FOREST .. 17
 3.3.6 Sonstige Objektarten ... 19
 3.3.7 TERRAIN .. 19

4 Anwenden des 3Dfiers ... 20
 4.1 Allgemeine Informationen ... 20
 4.1.1 Eingangsdaten ... 20
 4.1.2 Ergebnisdaten ... 20
 4.2 Umsetzung ... 21
 4.2.1 Konfigurationsdatei ... 21
 4.2.1.1 input_polygons ... 21
 4.2.1.2 lifting_options ... 21
 4.2.1.3 input_elevation ... 22
 4.2.1.4 options ... 22
 4.2.1.5 output .. 22
 4.2.2 Prozessschritte ... 23
 4.2.2.1 Einlesen der Konfigurationsdatei ... 23
 4.2.2.2 Analyse der Eingangspolygone .. 23
 4.2.2.3 Einlesen der Punktwolke .. 23
 4.2.2.4 Erstellung des 3D-Modells ... 23
 4.2.3 Dauer der Prozessierung .. 24
 4.2.3.1 Gesamtumsetzung ... 25
 4.2.3.2 Parallelisierte Umsetzung ... 25

4.3 Ergebnisbewertung ... 27
 4.3.1 Allgemeine Aussagen ... 27
 4.3.2 Analysen / Auffälligkeiten ... 27
 4.3.2.1 Ausdünnung der Punktwolke ... 27
 4.3.2.2 Triangulation reduzieren (simplification) ... 29
 4.3.2.3 Gebietsrand .. 31
 4.3.3 Weitere Anmerkungen .. 32
 4.3.3.1 Protokollierung (Logging) ... 32
 4.3.3.2 Zeichenkodierung ... 32
 4.3.3.3 Bezugsstystem ... 32

5 Abbildung auf CityGML-Modell ... 33
 5.1 Semantisches Mapping ... 33

Abschlussbericht
<table>
<thead>
<tr>
<th>Seite</th>
<th>Kapitel Titel</th>
<th>Unterkapitel / Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Geometrie</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Zusätzliche Transformationen</td>
<td>5.3.1 Setzen des korrekten Koordinatensystems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3.2 Einfügen zusätzlicher Attribute</td>
</tr>
<tr>
<td>6</td>
<td>Austausch der mit dem 3Dfier erzeugten Objektarten</td>
<td>6.1 Gebäude</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2 Wald</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3 DGM 6.3.1 Ausgangsdaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3.1.1 LDBV 6.3.1.2 LGL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3.2 Bearbeitung 6.3.3 Ergebnis</td>
</tr>
<tr>
<td>7</td>
<td>Qualitätsbewertung</td>
<td>7.1 Umgang mit Inkonistenzen in Eingangsdaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.1.1 Allgemein 7.1.2 Problematisch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.1.2.1 Nicht freigestellte Objekte 7.1.2.2 Lücken in Punktwolke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.1.3 Positiv 7.1.3.1 Inkonistenzen in 2D-Ausgangsdaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.1.3.2 Lücken im 2D-Datenbestand 7.2 Verwendung von unklassifizierten Punktwolken</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.2.1 Gebäude 7.2.2 Wald</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.2.3 Betrachtung der einzelnen Objektarten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.1 BUILDING 7.3.1.1 Grundlage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.1.2 Lage 7.3.1.3 Bodenhöhe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.2 BRIDGE 7.3.2.1 Einheitliche Höhe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.2.2 Triangulationsprobleme 7.3.2.3 Brücken queren Brücken</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.2.4 Brücken in dichter Vegetation 7.3.2.5 Einzelpolygone vereinigen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.2.6 Zusammenfassung und Fazit 7.3.3 ROAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.3.1 Lücken im Punktdatenbestand 7.3.3.2 Geringe Punktdichte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.3.3 Unterschiedliches Gefälle 7.3.3.4 Neigungen im Straßenquerschnitt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.3.5 Enger Kurvenverlauf 7.3.3.6 Unterscheidung der Verkehrswege</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.3.7 Zusammenfassung und Fazit 7.3.4 WATER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3.4.1 Stehendes Gewässer 7.3.4.2 Fließgewässer</td>
</tr>
<tr>
<td>8</td>
<td>Bereitstellung der Ergebnisdaten</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Zusammenfassung & Ausblick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Literaturverzeichnis</td>
</tr>
</tbody>
</table>
1 Einführung

1.1 Projektbeteiligte und Projektphasen

Das Projekt „3D Digitales Landschaftsmodell“ (3D-DLM), das am Runden Tisch GIS e.V. durchgeführt wird, besteht aus zwei aufeinander aufbauenden Phasen:

- Phase 1: Konzeptionsphase
- Phase 2: Demonstrationsphase

Die Konzeptionsphase fand bereits im Jahr 2016 statt. Diese Projektphase 1 umfasste die folgenden Themenblöcke:

1) Identifizierung potentieller Anwendungsfelder für ein 3D-DLM
2) Evaluierung der bereitgestellten Daten
3) Identifizierung der Anforderungen an die Datenmodellierung & Semantisches Mapping
4) Beschreibung von Methoden zur automatisierten 2D→3D-Transformation zur Überführung in ein konsistentes, semantisches 3D-DLM

Der Abschlussbericht zur Konzeptionsphase kann auf der Homepage des Runden Tisch GIS e.V. heruntergeladen werden.

Das ‘Bundesamt für Eich- und Vermessungswesen’ (BEV), das in der Konzeptionsphase als Auftraggeber beteiligt war, war nicht mehr Bestandteil der Demonstrationsphase.

Im Folgenden sind alle 3D-DLM-Projektbeteiligte der 2. Projektphase aufgeführt:

<table>
<thead>
<tr>
<th>AUFTRAGGEBER</th>
<th>Name</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landesamt für Digitalisierung, Breitband und Vermessung Bayern</td>
<td>Dr. Robert Roschlaub</td>
<td></td>
</tr>
<tr>
<td>Landesamt für Geoinformation und Landentwicklung Baden-Württemberg</td>
<td>Manfred Gültlinger</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BERATER</th>
<th>Name</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundesamt für Landestopographie swisstopo</td>
<td>Dr. André Streilein</td>
<td></td>
</tr>
</tbody>
</table>

Die Ausgangssituation bei den Projektpartnern zur Thematik 3D-DLM stellte sich vor Beginn der ersten Projektphase wie folgt dar:

- **BEV und österreichische Bundesländer**: Im Land Vorarlberg wurde bereits 2015 in einer Machbarkeitsstudie die Erstellung und Nutzung eines 3D-DLMs untersucht (VoDLM3D).

- **Swisstopo**: In der Schweiz wird mit dem swissTLM3D bereits ein entsprechendes Produkt angeboten.

Die genannten Aktivitäten werden bisher weitgehend unabhängig voneinander vorangetrieben. Ein wesentliches Ziel des Projekts ist daher auch der Erfahrungsaustausch, bei dem alle Beteiligten von den Erkenntnissen der anderen Partner profitieren können.
1.2 Ziel der Demonstrationsphase

Aufbauend auf der 1. Phase des 3D-DLM-Projekts erfolgt in der Demonstrationsphase der Aufbau eines konsistenter 3D Digitalen Landschaftsmodells; die festgelegten Objektklassen (siehe Phase 1) werden auf das DGM im LoD1 modelliert und um die 3D-Gebäudemodelle im LoD2 ergänzt.

Konkret bedeutet dies für die Durchführung der Demonstrationsphase, dass die folgenden Arbeitspakete notwendig sind:

1) Vorverarbeitung der Daten

 Methoden zur Erzeugung eines konsistenten 2D-DLMs: Dabei soll untersucht werden, wie die oft nur linienhaft vorliegenden Daten (z.B. Verkehrswege) in flächenhafte Daten konvertiert werden können, um eine Tessellation (Landkarte im topologischen Sinn) zu erreichen; ein mögliches Vorgehen könnte sein, die linienhaften Elemente zu puffern (siehe Abschlussbericht Phase 1) und den im 2D-DLM nicht klassifizierten Teil der Erdoberfläche aus dem DGM zu übernehmen.

2) Anwendung des 3Dfiers auf die Daten

 - Untersuchung, inwieweit das Tool auf die vorhandenen Daten anwendbar ist
 - Ziel ist die prototypische Ableitung eines Komplettmodells

3) Abbildung auf das CityGML-Datenmodell

 Es ist zu prüfen, welche CityGML-Klassen vom 3Dfier automatisch erzeugt werden; falls erforderlich, wird im Nachgang eine Anpassung entsprechend der Mapping-Tabelle aus Projektpunkt 1 vorgenommen bzw. generische Objekte werden den entsprechenden thematischen Klassen zugewiesen. Außerdem muss ein entsprechendes Attribut-Mapping vorgenommen werden.

4) Qualitätsbewertung der erzeugten 3D-Objekte

 - Detaillierte Untersuchung, welche Probleme mit dem 3Dfier nicht gelöst werden können (und Aufzeigen, was geändert werden müsste) bzw. wo sich der 3Dfier mit zufriedenstellenden Ergebnissen einsetzen lässt.
 - Untersuchung folgender Fragestellungen:
 o Bis zu welchem Grad kann der 3Dfier beispielsweise mit Inkonsistenzen umgehen?
 o Welche Ergebnisse können mit unklassifizierten Punktwolken (z.B. bDOMs) erreicht werden?
 o Welche Fehler treten bei der Verschneidung von DGM bzw. DOM mit dem Basis-DLM auf? Ausblick auf Algorithmen bzw. wo muss die Geometrie des Basis-DLM verbessert werden?

5) Bereitstellung der Ergebnisdaten

 Download und Web-basierte 3D-Visualisierung (Demonstrator mit 3DCityDB und WebClient)

2 https://github.com/tudelft3d/3dfier
1.3 Testgebiet

In Absprache zwischen dem LGL und dem LDBV wurde sich auf ein Testgebiet im Grenzbereich zwischen Baden-Württemberg und Bayern festgelegt. Das Gebiet nordöstlich vom Bodensee umfasst 254km²; die genaue räumliche Ausdehnung kann den folgenden Abbildungen entnommen werden.
2 Semantisches 3D-Landschaftsmodell – Mehrwert

3D-Stadt- und Landschaftsmodelle werden häufig immer noch als reine graphische oder geometrische Modelle definiert; dabei werden die semantischen Aspekte oft vernachlässigt\(^3\). Dies hat zur Folge, dass diese Modelle fast ausschließlich für Visualisierungszwecke verwendet werden können, nicht jedoch für thematische Abfragen, Analyseaufgaben oder Simulationen. Für viele Anwendungsszenarien sind aber genau diese semantischen Informationen von enormer Wichtigkeit.

Im Folgenden seien einige Anwendungsfelder vorgestellt, die die semantischen Informationen der einzelnen Stadt- und Landschaftsobjekte benötigen:

- **Überschwemmung:**

 Bei Starkregen und damit einhergehenden Überflutungereignissen ist es enorm wichtig, schnell und effektiv zu handeln. Hierfür benötigt man Informationen über neuralgische Punkte, wie beispielsweise Objekte der baulichen Infrastruktur (Dämme, Durchlässe, Kanäle, u.v.m.). Müssen Personen evakuiert werden, ist es zudem wichtig zu wissen, bis zu welchem Stockwerk die Evakuierung erfolgen muss, aber beispielsweise auch, welche Straßen überhaupt noch durch Rettungsfahrzeuge befahrbar sind. Hierfür muss es u.a. möglich sein, räumliche Abfragen hinsichtlich der Höhe von Gebäuden oder auch der Höhenlage von betroffenen Straßen zu stellen.

- **Sichtbarkeitsanalysen / Verschattungen / Solarpotentiale:**

\(^3\) siehe "OGC City Geography Markup Language (CityGML) Encoding Standard"
Die dargestellte Sonneneinstrahlungsanalyse wurde mittels eines an der TUM entwickelten Programms durchgeführt, welches für 3D-Stadtmodelle im CityGML-Format verwendet werden kann. Die ermittelten Ergebnisse werden dabei im Ausgangsdatensatz in Form von geeigneten Werteaggregationen angereichert und als Texturen für die LoD2-Gebäudemodelle visualisiert. Dabei wird neben dem Sky View Factor (prozentuales Sichtfeld von einem Beobachtungspunkt auf die Hemisphäre) auch die globale Strahlung (Direkt- und Diffusstrahlung) unter Berücksichtigung der umliegenden Topographie im dreidimensionalen Raum berechnet. Wie in den beiden unteren Abbildungen zu erkennen ist, fließen in die Berechnung auch umliegende Objekte wie Bäume oder angrenzende Gebäude (inkl. Balkone) ein, die u.U. die Hausfassaden bzw. die Dächer abschatten können.

Diese Berechnung lässt sich beispielsweise auch auf den Straßenraum anwenden. So lassen sich u.a. urbane Hitzeinseln identifizieren und visualisieren.
Verkehrsplanung:

Auch hinsichtlich der Verkehrsplanung ist die semantische Anreicherung der einzelnen Objekte von Interesse. So sieht das im Rahmen der Masterarbeit von Christof Beil weiterentwickelte Konzept des Transportation Modells vor, ab LoD2 auch Gehwege flächenhaft zu repräsentieren und ab LoD3 zusätzlich die einzelnen Fahrspuren zu modellieren und dabei beispielsweise auch Straßenschäden oder die Positionen von Gullys zu berücksichtigen (siehe Abbildung). Diese Informationen sind z.B. für Trainingssimulatoren oder auch für Schwerlasttransporte wichtig.

Ein Ergebnis der detaillierten Repräsentation des Straßenraums ist in folgendem Ausschnitt abgebildet (Columbus Circle in NYC).
Für die Repräsentation von Semantischen Stadt- und Landschaftsmodellen hat sich der internationale Standard des OGC “CityGML” etabliert.

Aus den aufgeführten Gründen wird für das 3D-DLM-Projekt CityGML als Datenmodell verwendet. Weitere Gründe, die für das Nutzen des CityGML-Standards sprechen, können außerdem dem Abschlussbericht zur 1. Projektphase entnommen werden.
3 Vorverarbeitung der Daten

3.1 Herausforderungen

Ausgangsdaten für die Erzeugung des 3D Digitalen Landschaftsmodells sind die ATKIS-Daten der AdV. Viele dieser Daten liegen lediglich linienhaft vor. Dies erfordert eine entsprechende Pufferung um standardisierte bzw. klassifizierte Werte ausgehend von den ATKIS-Attributen.

Eine weitere Herausforderung besteht darin, dass sich die Geometrien der einzelnen Objektarten teilweise gegenseitig überlagern. Dies trifft beispielsweise für den linienhaften Verlauf von Straßen oder Flüssen innerhalb eines Wald-Polygons zu. Dies verdeutlicht die Gegenüberstellung der beiden unteren Abbildungen. Die Straßen (rot), die Wege (gelb) und die Flüsse (blau) zerschneiden einige der Waldpolygone. Dies macht es einerseits erforderlich, dass die neu entstehenden Teilflächen des ursprünglichen Waldpolygons den Bezug zu diesem nicht verlieren; d.h. nach dem Zerlegen eines Wald-Polygons in mehrere kleine Objekte, müssen diese mittels der ursprünglichen ID zu der Geometrie MultiSurface aggregiert werden. Andererseits müssen für die Pufferung der linienhaft vorliegenden Fluss- und Straßenachsen Teile der Waldflächen entsprechend freigestellt werden.

Für die korrekte Anwendung des 3Dfiers werden für jedes Objekt die Attribute „uniqueID“ und „height_field“ (mit den Werten 0 oder 1) benötigt. Der 3Dfier berücksichtigt zunächst alle Objekte mit dem height_field = 0 (planare Zerlegung); im Anschluss werden die überlappenden Objekte wie z.B. Brücken hinzugefügt. An dieser Stelle sei darauf hingewiesen, dass das Attribut „height_field“ nicht gleichzusetzen ist mit dem Attribut „HDU_X“ (hatDirektUnten) der ATKIS-Daten. Bei den Brückenobjekten der ATKIS-Daten wird mittels HDU_X nicht die Lage-Beziehung zu den Straßen angegeben (für diesen Fall müsste der Wert des HDU_X-Attributs der Brücke stets 1 sein); sondern es gibt die Beziehung von sich kreuzenden Brücken zueinander an. So hat die Brücke, die über einer anderen Brücke verläuft, den Wert ‘1‘ (siehe folgende Abbildung).
3.2 Allgemeines Vorgehen

Zunächst werden alle relevanten Objektarten einzeln betrachtet und entsprechend aufbereitet. Dies umfasst unter anderem die Filterung, Pufferungen um definierte Werte oder die Erzeugung zusätzlicher Attribute. Da als Resultat der Pufferung von Linienobjekten sich diese neu erzeugten Polygone mit den benachbarten Flächen unter Umständen überlagern, müssen diese in einem nächsten Schritt freigestellt werden. Dadurch liegen in der Ebene \((HDU_X = 0) \) alle Objekte überlappungsfrei vor. Schließlich erfolgt die Erzeugung der Terrain-Flächen dadurch, dass die bisher noch vorhandenen Lücken als Terrain-Objekte deklariert werden (das Terrain / Gelände wird nach der Anwendung des 3Dfiers allerdings wieder durch das ursprüngliche DGM des LDBV bzw. des LGL ersetzt; dies wird im Detail im Kapitel 6.3 behandelt).

3.3 Betrachtung der einzelnen Objektarten

3.3.1 BUILDING

Die vom 3Dfier erzeugten Gebäudemodelle sollen im Nachgang durch die vorhandenen LoD2-Gebäudemodelle ersetzt werden. Für eine korrekte Triangulation der an die Gebäude angrenzenden Polygone müssen dennoch zunächst die entsprechenden Gebäude-Grundflächen in den Workflow eingehen.

Für die Anhebung der LoD2-Gebäude auf die korrekte Höhe wird die absolute Höhe mit übergeben \((CoordinateExtractor)\). Zusätzlich wird das Attribut „height_field“ erzeugt und auf den Wert 0 gesetzt.
Zu beachten ist außerdem, dass nicht die gelieferten Grundrisse in den Workflow eingehen, sondern tatsächlich die Groundsurfaces der LoD2-Gebäudemodelle. Wie man in der folgenden Abbildung erkennen kann, sind diese Datensätze (Grundrisse / LoD2-Gebäudemodelle) nicht kongruent zueinander und es könnte bei Verwendung der gelieferten Grundrisse und dem im Nachgang stattfindenden Austausch durch die LoD2-Gebäudemodelle zu Lücken im bzw. zu Überlagerungen mit dem Terrain kommen.

3.3.2 BRIDGE

Als Grundlage für die Aufbereitung der Brücken-Objekte dienen die Files „ver06_f“ sowie „ver06_l“. Diese umfassen Bauwerke, Anlagen und Einrichtungen für den Verkehr (detaillierte Informationen bzgl. der Datengrundlage können dem Abschlussbericht zur 1. Phase entnommen werden).

Sowohl die flächenhaft, als auch die linienhaft vorliegenden Bauwerke werden mittels der Bauwerksfunktion BWF gefiltert. Dadurch werden Objekte herausgefiltert, die Tunnel (1870), Schutzgalerien (1880), Schleusenkammern (1890) oder Durchfahrten (1900) darstellen. Außerdem wird ein zusätzliches Attribut für das height_field ergänzt und auf den konstanten Wert 1 gesetzt.

Die Geometrie der flächenhaften Brückenobjekte kann dabei direkt übernommen werden. Die linienhaften Brückenobjekte werden zusätzlich gepuffert. Da keine Angaben über die reale Breite der Brücken vorhanden sind und außerdem diese der Breite der anschließenden Straßen entsprechen sollen, werden diese Breiten für die Pufferung übernommen (diese liegen oft lediglich klassifiziert vor).

Nach Rücksprache mit den Auftraggebern wurde sich außerdem darauf verständigt, dass die Straßen an den Brückenobjekten nicht unterbrochen werden sollen, sondern diese auch zusätzlich zum Brückenobjekt dargestellt werden sollen. Dadurch ist es beispielsweise leichter möglich, die Gesamtfläche einer Straße zu berechnen.
3.3.3 ROAD

Diese Klasse setzt sich aus
- dem Straßenverkehr (ver01_f/ver01_l),
- den Wegen (ver02_1) und
- den Gleisen (ver03_f/ver03_l)
zusammen.

Straßenverkehr

Da die flächenhaft vorliegenden Objekte des Straßenverkehrs nicht nur die eigentlichen Fahrbahnen darstellen, sondern zusätzlich beispielsweise auch Verkehrsbegeleitflächen (siehe Abbildung), werden diese entsprechend filtriert und nicht weiter als Straßenobjekte behandelt.

Außerdem ist zu beachten, dass sich die flächenhaften Straßen (ver01_f) und die Straßenachsen (ver01_l) teilweise überlagern. In diesem Fall werden die bereits vorhandenen Straßenflächen übernommen und lediglich die Achsen gepuffert, die keine Überlappung aufweisen.\footnote{Die Masterarbeit „Detaillierte Repräsentation des Straßenraums in 3D-Stadtmodellen“ von Christof Beil führt diese Thematik weiter aus (http://mediatum.ub.tum.de/doc/1350734/1350734.pdf)}

Die Pufferung erfolgt über das Attribut \textit{BRV} (Breite des Verkehrsweges). Diese sind über Klassenwerte angegeben:
- Klasse 6: 0m – 6m Breite
- Klasse 9: 6m – 9m Breite
- Klasse 12: 9m – 12m Breite
- usw. in Schritten von 3m.
Wege
Bei den Wegen \(\text{ver02}_l \) erfolgt die Pufferung ebenfalls über die Breite der Fahrbahn und der entsprechenden Klassenkategorie (siehe Straßenverkehr).

Gleise
Um die Gleise zu bearbeiten, erfolgt zunächst eine Filterung über das Attribut \(\text{BKT} \) (Bahnkategorie). Somit lassen sich zum Beispiel Seilbahnen herausfiltern.

Die Pufferung erfolgt für die Gleise mittels des Attributs \(\text{GLS} \) (Anzahl der Streckengleise). Hat dieses Attribut den Wert 1000 (d.h. ist es eingleisig), so wird um den halben Wert der Standard-Spurweite von 1,435m gepuffert. Für zweigleisige Strecken \(\text{GLS} = 2000 \) wird ein Puffer-Wert von 2m verwendet.

3.3.4 WATER
Auch im Bereich der Gewässer-Objekte liegen diese flächenhaft \(\text{gew01}_f \) beziehungsweise linienhaft \(\text{gew01}_l \) vor. Die flächenhaften Objekte können wiederum direkt übernommen werden. Die linienhaft vorliegenden Gewässerobjekte werden mittels der Breite des Gewässers \(\text{BRG} \), die wiederum durch Klassen repräsentiert werden, gepuffert.

- Klasse 3: 0m – 3m Breite des Gewässers \(\Rightarrow \) Puffer: 1m
- Klasse 6: 3m – 6m Breite des Gewässers \(\Rightarrow \) Puffer: 2,5m
- Klasse 12: 6m – 12m Breite des Gewässers \(\Rightarrow \) Puffer: 4,5m

3.3.5 FOREST
Um unerwünschte Überlagerungen zu vermeiden, müssen die folgenden Objektarten in den Wald-Polygongonen \(\text{veg02}_f \) freigestellt werden:

- Brücken
- Gewässer
- Straßen
- Wege
- Gleise
Vorverarbeitung der Daten

Betrachtung der einzelnen Objektarten
3.3.6 Sonstige Objektarten

Neben den bereits beschriebenen Objektarten, die sich eindeutig einer Klasse des 3Dfiers zuordnen lassen, gibt es in den ATKIS-Daten noch weitere Objektarten, die bei der Erzeugung des 3D-Landschaftsmodells berücksichtigt werden sollten. Diese werden zunächst einer geeigneten 3Dfier-Klasse zugeordnet und im anschließenden Mapping der passenden CityGML-Klasse zugewiesen. Dies sind die folgenden Objektarten:

Landwirtschaft

veg01_f

Bauwerke oder Anlagen für Sport, Freizeit und Erholung

sie03_f

Bauwerke oder Anlagen für Industrie und Gewerbe

sie03_f

Flugverkehr

ver04_f

Übrige Objektarten der Vegetation außer Wald und LWS

veg03_f

3.3.7 TERRAIN

Außerdem müssen für die Anwendung des 3Dfiers die zwei zusätzlichen Attribute `uniqueID` und `height_field` erzeugt werden. Letzteres erhält den konstanten Wert 0.
4 Anwenden des 3Dfiers

4.1 Allgemeine Informationen

Der 3Dfier ist ein Open Source Tool zur Erzeugung von 3D-Objekten aus 2D-DLM und LIDAR Punkt-
 wolken, das an der TU Delft in den Niederlanden entwickelt wurde. Detailinformationen zu diesem Werk-
zeug finden sich unter https://github.com/tudelft3d/3dfier.

Das Grundprinzip des 3Dfiers illustriert die folgende Abbildung:

2D data (topographic map) + Elevation dataset (lidar) = 3D city model

Ergebnis und Ziel der Anwendung ist ein trianguliertes Digitales Landschaftsmodell in 3D.

Alle hier beschriebenen Tests und Anwendungen wurden mit dem 3dfier Version 0.9.7 durchgeführt.

4.1.1 Eingangsdaten

Der 3Dfier erfordert zwei Arten von Eingangsdaten. Zunächst sind dies lückenlose, flächenhafte 2D-
Daten, die die Landschaft beschreiben und auf eine der folgenden Klassen abgebildet werden müssen:

- Building
- Terrain
- Road
- Water
- Forest
- Bridge
- Separation

Des Weiteren ist eine entsprechende Punktwolke erforderlich, die mindestens die folgenden Klassen aufweist:

- 0–1: Created, never classified and / or unclassified
- 2: Ground
- 3–5: Vegetation

4.1.2 Ergebnisdaten

Neben CityGML stehen noch die Ausgabeformate OBJ, CSV (nur Gebäude), Shapefile und PostGIS zur Verfügung. Die Tests wurden mit den Ausgabeformaten CityGML (für die semantische Weiterverar-
 beitung im Projekt) und OBJ (für Testvisualisierungen und visuelle Qualitätsbewertungen) durchgeführt.
4.2 Umsetzung

Die Umsetzung und damit die konkrete Anwendung des 3Dfiers im Rahmen dieses Projektes erfolgte mit den im Vorfeld aufbereiteten ALKIS- und ATKIS-Daten (siehe Kapitel 3) sowie den zur Verfügung gestellten 3D-Punktwolkendaten der Auftraggeber.

Technisch erfolgt der Aufruf des 3Dfiers auf Kommandozeilenbasis mit Übergabe einer Konfigurationsdatei sowie der Ausgabedatei.

Beispielaufrub über CMD-Shell unter dem Betriebssystem Windows:

```
<3dfier.exe> <Konfigurationsdatei> -o <Ausgabedatei>
c:\Tools\3dfier-windows-x64-v0.9.7\config.yml -o output/testarea.obj
```

Ein Tutorial zur Anwendung des 3Dfiers kann unter folgendem Link heruntergeladen werden:

https://github.com/tudelft3d/3dfier/wiki/General-3dfier-tutorial-to-generate-LOD1-models

4.2.1 Konfigurationsdatei

Die eigentliche Konfiguration gliedert sich in fünf Teilbereiche, die im Folgenden kurz beschrieben werden:

4.2.1.1 input_polygons

Angabe der Shape-Dateien (2D-Eingangsdaten) und Zuordnung zu den entsprechenden Klassen (siehe Abschnitt 4.1.1) (lifting). Für jede der möglichen Klassen wird eine eigene Methode zur Erstellung der 3D-Objekte verwendet.

Beispiel:

```
input_polygons:
  datasets:
    - 2D-Daten_Clip/_Wald_LDBV.shp
    - 2D-Daten_Clip/_Wald_LGL.shp
  uniqueid: OBJID
  lifting: Forest
```

4.2.1.2 lifting_options

Parametrierung der jeweiligen Umsetzungsalgorithmen (lifting). Im Wesentlichen handelt es sich dabei um die folgenden Angaben:

- Angabe der zur verwendenden Punkte des DOM als Perzentile zur Ermittlung der Höhe des Objekts. Dies betrifft die Klassen Water, Road und Bridge. Beispiel:

  ```
  Water:
    height: percentile-10
  Road:
    height: percentile-50
  ```
- Angabe zur Ausdünnung der triangulierten Flächen bei den Klassen Forest und Terrain.
 Beispiel:

 Terrain:
 simplification: 5
 Forest:
 simplification: 10

 Je höher der angegebene Wert ist, desto stärker wird das Ergebnis der Triangulation geglättet und vereinfacht.

4.2.1.3 input_elevation

In diesem Abschnitt werden die zu verwendenden LAS-Dateien angegeben.

Beispiel:

input_elevation:
- datasets:
 - g:/RTGIS/3DDLM/LDBV/DOM/4329_5273_all.laz
 - g:/RTGIS/3DDLM/LDBV/DOM/4329_5274_all.laz
 - g:/RTGIS/3DDLM/LDBV/DOM/4330_5273_all.laz
 - g:/RTGIS/3DDLM/LDBV/DOM/4330_5274_all.laz

WICHTIG: Es muss darauf geachtet werden, dass auch wirklich ALLE LAS-Dateien vorhanden sind.
Fehlt eine Datei, so wird der 3Dfier mit einem Fehler beendet. Dies erfolgt aber leider nicht im Sinne einer initialen Prüfung, sondern erst, wenn die entsprechende .laz Datei in der Verarbeitungskette benötigt wird. Dieses Problem wird in einer Produktionsumgebung sinnvollerweise von einem Steuerprogramm abgefangen, in das der 3Dfier eingebettet ist.

Zusätzlich können LAS-Klassen angegeben werden, die nicht ausgewertet werden sollen:

omit_LAS_classes:
 - 1 # unclassified
 - 6 # building

Außerdem können die LAS-Punkte bereits beim Einlesen ausgedünnt werden.

Beispiel:

thinning: 10

Dabei wird die Anzahl der Punkte angegeben, die überlesen werden sollen (im Beispiel wird also nur jeder zehnte Punkt übernommen).

4.2.1.4 options

Angabe von globalen Parametern zur Feinjustierung der Umsetzung. Hier wurden während der Testumsetzung die Default-Parameter verwendet.

4.2.1.5 output

Angabe des zu erzeugenden Ausgabedateityps.

WICHTIG: Der Ausgabedateityp sollte mit der übergebenen Ausgabedatei beim Aufruf übereinstimmen.
4.2.2 Prozessschritte
Die Umsetzung erfolgt in vier Einzelschritten, die im Folgenden näher erklärt werden:

4.2.2.1 Einlesen der Konfigurationsdatei
Als erstes wird die Konfigurationsdatei eingelesen und auf korrekte Syntax geprüft:
Reading config file: c:\RTGis\2D-Daten_Clip.yml Config file is valid.

4.2.2.2 Analyse der Eingangspolygone
Anschließend werden alle Polygone analysiert und ggf. aufbereitet:
Gebiete:
- (MultiPolygon split into 2 Polygons)

Fehlerhafte Polygone werden dabei so weit wie möglich automatisch korrigiert:
Warning 1: Ring Self-intersection at or near point 4330099.090002181 5273423.7502102088 0
oder
Geometry invalid: 2c471891-a1fa-4f6e-84d8-2c7523622a52

Am Ende dieses Prozesses werden die Gesamtanzahl der verwendeten Polygone und die Gebietskoordinaten (Extent) ausgegeben.
Total # of polygons: 1,281 Constructing the R-tree... done. Spatial extent: (4,329,317.262, 5,273,000.014) (4,331,000.000, 5,275,000.000)

4.2.2.3 Einlesen der Punktwolke
Es folgt nun der zeitintensivste Prozess, das Einlesen der 3D-Punktwolken (LAZ-Dateien):
Reading LAS/LAZ file: g:/RTGIS/3DDLM/LDBV/DOM/4330_5274_all.laz (1,559,828 points in the file) (all points used, no skipping)

4.2.2.4 Erstellung des 3D-Modells
Als viertes und letzter Teilschritt erfolgt das eigentliche Erzeugen des 3D-Modells:
Lifting all input polygons to 3D...
====== /LIFTING ======
====== LIFTING/ ======
====== /ADJACENT FEATURES ======
====== ADJACENT FEATURES/ ======
====== /STITCHING ======
====== STITCHING/ ======
====== /BOWTIES ======
====== BOWTIES/ ======
====== /VERTICAL WALLS ======
====== VERTICAL WALLS/ ======
====== /CDT ======
4.2.3 Dauer der Prozessierung

Die folgenden Angaben zu Laufzeiten basieren auf der Durchführung auf einem Testrechner mit den folgenden Merkmalen:

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Microsoft Windows 7 Professional (x64)</td>
</tr>
<tr>
<td>CPU</td>
<td>Intel(R) Core(TM) i7-4712MQ CPU @ 2.30GHz</td>
</tr>
<tr>
<td>Number of CPU Cores</td>
<td>4</td>
</tr>
<tr>
<td>Number of Logical CPUs</td>
<td>8</td>
</tr>
<tr>
<td>Total Memory Size [MB]</td>
<td>8192</td>
</tr>
</tbody>
</table>

Die Dauer der Umsetzung wird insbesondere von der Größe / Auflösung der Punktwolke bestimmt. Im Folgenden seien die Zeiten für die Umsetzung des Datenbereichs des LDBV angegeben (189 km², 214 LiDAR-Kacheln á 1km² - siehe Abschlussbericht Phase 1):

- All points read in 5048 seconds || 01:24:08
- Features written in 225254 ms
- Successfully terminated in 5548 seconds || 01:32:28

⇒ 90,99% der Gesamtzeit wurden für das Einlesen der Punktwolke verwendet.

Dabei verschlingt das Einlesen der Punkte selber kaum Ressourcen, weder an RAM, noch an CPU-Leistung (CPU-Auslastung ~13%).
4.2.3.1 Gesamtumsetzung
Komplettes Testgebiet (254km², 296 LiDAR-Kacheln à 1km² - siehe Abschlussbericht Phase 1).

Umsetzung in einem Stück, **Dauer: 1 Stunde und 50 Minuten**

4.2.3.2 Parallelisierte Umsetzung
Vor dem Hintergrund einer landesweiten Umsetzung wurde im Rahmen des Projektes untersucht, inwieweit sich die Anwendung des 3Dfiers parallelisieren lässt und welche Einsparungseffekte bzgl. Laufzeit durch eine solche Parallelisierung erreichbar wären.

Um eine parallelisierte Produktion zu simulieren, wurde das Testgebiet in 29 (A-W, LGL1-7) annähernd gleichmäßige Gebiete unterteilt (siehe folgende Abbildung (A-W, LGL1-7)). Anschließend erfolgte die Zuweisung der Gebiete zu fünf Parallelprozessen (5*13% → CPU-Auslastung ~ 65%).
Anwenden des 3Dfiers

Umsetzung

Zuweisung:
Prozess 1: A, B, C, D, LGL2
Prozess 2: E, F, G, H, I, LGL5, LGL6
Prozess 3: K, L, M, N, LGL1
Prozess 4: O, P, Q, R, LGL3, LGL7
Prozess 5: S, T, U, V, W, LGL4

Gesamtdauer der parallelisierten Prozessierung: 27 Minuten

Mit der Aufteilung in Gebiete, die hinsichtlich der verfügbaren IT-Infrastruktur (Prozessoren, Hauptspeicher, Plattendurchsatz) optimiert portioniert werden und der daraus resultierenden Parallelisierung der Prozesse, kann ein deutlicher Geschwindigkeitszuwachs erreicht werden.

Vergleich Gesamtumsetzung / Parallelisierung:
Komplettumsetzung: 1h 50 Minuten
Gebiete in 5 Parallelprozessen: 0h 27 Minuten
Die Architektur und Prozesslogik des 3Dfiers lässt eine Parallelprozessierung mit einfachen Mitteln zu. Allerdings sind für die notwendige ‘Vernähung’ der entstehenden Teilgebiete des 3D-DLMs Vorkehrungen im Pre- und Postprocessing zu treffen. Dies sind zum Beispiel:

- Verwendung eines überlappenden Puffers bei der Portionierung der Teilgebiete, dessen Ausdehnung sich dynamisch so ergibt, dass alle 2D-Objekte, die über den Gebietsrand hinausragen, vollständig im Puffer liegen.
- Nachträgliche Reduzierung der Teilergebnisse auf die Kerngebiete jeder Berechnungsportion
- Vernähung dieser Kerngebiete
- Berücksichtigung des Aspekts, dass jedes 2D-Objekt eindeutig einer Kachel zuzuordnen ist und damit seine 3D-Repräsentation nur einmal im vernähten 3D-DLM erscheint.

4.3 Ergebnisbewertung

4.3.1 Allgemeine Aussagen

Der 3Dfier lieferte mit den beschriebenen Ausgangsdaten im vollautomatischen Prozess ein fachlich sinnvolles Ergebnis, das aber im Detail noch inhaltliche Fehler enthält, auf die im Folgenden näher eingegangen wird. Eine genauere Bewertung der Ergebnisqualität findet sich in Kapitel 7.

Der Hardware-Ressourcenbedarf sowie die Laufzeiten der Prozessierung des Testgebiets erscheinen für eine Anwendung auch landesweiter Datenbestände geeignet.

4.3.2 Analysen / Auffälligkeiten

4.3.2.1 Ausdünnung der Punktwolke

Über den Konfigurationsparameter thinning (siehe 4.2.1.3) kann die Punktwolke zur Laufzeit ausgedünt werden. Dabei wird die Anzahl der Punkte angegeben, die überlesen werden sollen. Damit kann die Laufzeit bei besonders hoher Punktdichte erheblich verringert werden.

Eine zu hohe Reduktion kann dann aber in der Folge zu Geometriefehlern der erzeugten Klassen führen.
Punktichte DOM-Kachel 4329_5274_all.laz: 1,46 p/m²

Kein Ausdünnen der Punktwolke: Straßenoberflächen sind glatt
thinning=0

Reading LAS/LAZ file: g:/RTGIS/3DDLM/LDBV/DOM/4329_5274_all.laz
(1,464,198 points in the file)
(all points used, no skipping)
[==] 100%
All points read in 8 seconds || 00:00:08

Ausdünnen (jeder 2. Punkt, entspricht ~0,73 p/m²): Unregelmäßige Straßenfläche
thinning=2

Spatial extent: (4,329,000.000, 5,274,000.000) (4,330,000.000, 5,275,000.000)
Reading LAS/LAZ file: g:/RTGIS/3DDLM/LDBV/DOM/4329_5274_all.laz
(1,464,198 points in the file)
(skipping every 2th points, thus 732,099 are used)
[==] 100%
All points read in 4 seconds || 00:00:04

Erkenntnis
Eine zu geringe Punktichte führt zu Geometriefehlern bzw. semantisch nicht korrekten Ergebnissen wie unruhigen Straßenoberflächen. Von der Anwendung des Parameters thinning ist daher im aktuellen Softwarestand abzuraten.
4.3.2.2 Triangulation reduzieren (simplification)

Die Oberflächen der Klassen Forest und Terrain werden direkt aus der Punktwolke abgeleitet und trianguliert. Die Oberflächen-Triangulation des Ergebnisobjekts kann über den Parameter simplification beeinflusst werden (siehe 4.2.1.2). Durch Anwendung dieses Parameters kann zu einem die Dateigröße reduziert werden (gerade bei der Erzeugung von CityGML), zum anderen wird aber natürlich auch das Ergebnis generalisiert.

Beispiel Klasse Forest:
Umsetzung eines Teilbereichs

Bei der Klasse Forest kann der Detailgrad der Umsetzung je nach Anwendungsfall von niederrangiger Bedeutung sein, dient er doch im Wesentlichen „nur“ zur groben Visualisierung (siehe auch 6.2). Umso mehr hat dieser Wert aber bei der Visualisierung des DGMs eine Bedeutung, da es hier auf eine möglichst exakte Wiedergabe ankommt, welche dann aber zu einer erheblich größeren Ergebnisdatei führen kann. Dies ist insbesondere dann der Fall, wenn der Wert simplification auf 0 gesetzt wird (jeder Punkt wird trianguliert) (siehe auch 6.3).
Beispiel DGM (Testkachel 2x2km, Ausgabeformat CityGML):

Gelände aus Punktwolke, simplification 10, Dateigröße 329MB

Gelände aus DGM1, simplification 10, Dateigröße 235MB
Ergebnisbewertung

Im Vergleich zum Default-Wert (simplification 10) steigt die Dateigröße bei einer Umsetzung (DGM1) ohne Vereinfachung auf das knapp 7-fache an.

Da aber in der Praxis für die betrachtete Projektregion ein hochgenaues und hochaufgelöstes DGM bereits existiert, ist das durch den 3Dfier erstellte DGM nur als Zwischenergebnis zu betrachten und dieses sollte in der Folge in Form eines Postprozesses durch das erwähnte existierende DGM ersetzt werden.

4.3.2.3 Gebietsrand

Neben den im Abschnitt 4.2.3.2 genannten Aspekten ist bei der Vernähung von Kacheln darauf zu achten, dass am Gebietsrand angrenzende Flächen in 2-facher Nachbarschaft zur Randberechnung mit einbezogen werden, da es sonst zu Kachelrandfehlern in Form virtueller Wände kommt:
4.3.3 Weitere Anmerkungen

4.3.3.1 Protokollierung (Logging)

Der 3Dfier bietet kein eigenes, konfigurierbares Logging an, so dass die Ausgabe auf der Konsole 'mitgeschnitten' werden muss. Wichtig dabei: Auf `stdout` wird nur ein kleiner Teil der Information über die Laufzeit ausgegeben. Die wesentlichen Informationen werden über `stderr` ausgegeben. Daher sollten beim Logging immer beide Kanäle mitgeschrieben werden:

```
call %threedfier% %config% -o %outfile% > LDBV_clip_lasorg_GML.log 2>&1
```

4.3.3.2 Zeichenkodierung

Die erzeugten CityGML-Dateien werden mit UTF-8 kodiert. Daher muss darauf geachtet werden, dass auch die Eingabe-Shape-Dateien UTF-8 kodiert sind.

4.3.3.3 Bezugsystem

CityGML-Daten werden (aktuell) immer im Niederländischen Bezugsystem ausgegeben (EPSG:7415).

Die Koordinaten der Geometrien entsprechen aber dem Bezugsystem der Eingangsdaten (Shape-Daten).

Daher muss das Bezugsystem in einem Postprozess auf das Bezugsystem der Eingangsdaten korrigiert werden, da das Ausgabebezugssystem aktuell nicht über die Konfigurationsdatei parametrierbar ist.
5 Abbildung auf CityGML-Modell

5.1 Semantisches Mapping

Da – wie bereits im Kapitel 3 erwähnt – vom 3Dfier nur die Klassen Building, Bridge, Road, Water, Forest, Terrain und Separation erzeugt werden, ist im Nachgang eine Semantische Transformation bzw. eine Anpassung entsprechend der Mapping-Tabelle aus Projektphase 1 notwendig.

Konkret bedeutet dies:

- Brücken: brg:Bridge → bridge:Bridge
- Gewässer: wtr:Waterbody → wtr:WaterBody
- Gleise: tran:Road → tran:Railway
- Straßen: tran:Road → tran:Road
- Wege: tran:Road → tran:Road
- Sportanlage: bldg:Building → luse:LandUse
- LWS: luse:LandUse → luse:LandUse
- Wald: veg:PlantCover → veg:PlantCover

So werden beispielsweise die Gleise, die nach Anwendung des 3Dfiers auf die thematische Klasse Road abgebildet wurden, auf die Klasse Railway gemappt.

Die Sportanlagen, die zunächst als Building abgebildet wurden (da die Oberfläche der sportlichen Anlagen als ebene Flächen dargestellt werden sollen), werden im anschließenden Mapping auf die Klasse LandUse abgebildet.

Mapping der Attribute

Alle Attribute der ATKIS-Daten werden entsprechend des CityGML-Standards überführt. Das bedeutet beispielhaft:

- **NAM:** Name → gml::_Feature::name (0..*)
- **OBJID:** eindeutiger Objektidentifikator → gml::_Feature::id (0..1)
- **BEGINN:** Lebenszeitintervall beginnt → _CityObject::creationDate (0..1)
Für den Fall, dass es für ein Attribut der ATKIS-Daten kein passendes Pendant im CityGML-Standard gibt, werden diese Informationen als generische CityGML-Attribute überführt.

Ein Beispiel für die Klasse der Brücke findet sich in folgender Abbildung:

Auch das durchgeführte ‘Value Mapping’ zwischen der Bauwerksfunktion (BWF) der Brücke und der CityGML-Codelist sei anhand der Bridge::class dargestellt:
Konkret bedeutet dies:

1802 (Bogenbrücke) → 1000 (arced bridge)
1803 (Fachwerkbrücke) → 1040 (truss bridge)
1804 (Hängebrücke) → 1060 (suspension bridge)
1805 (Pontonbrücke) → 1050 (pontoon bridge)

5.2 Geometrie

Alle Klassen wurden als MultiSurfaces im LoD1 modelliert. Lediglich die im Nachgang eingefügten Gebäude modelle des LDBV und des LGL liegen im LoD2 vor.

5.3 Zusätzliche Transformationen

5.3.1 Setzen des korrekten Koordinatensystems

Wie in Kapitel 4.3.3.3 bereits erwähnt, werden die CityGML-Daten aktuell im EPSG:7415 (Niederländisches Bezugssystem) ausgegeben. Dies erfordert es, dass im Nachgang das korrekte Koordinatensystem (EPSG:31468) gesetzt wird.

5.3.2 Einfügen zusätzlicher Attribute

Neben den in den ATKIS-Daten vorhandenen Attributen werden zusätzliche Attribute erzeugt. Dies sind zum einen die beiden generischen Attribute min_Hoehe und max_Hoehe. Das Speichern der minimalen und maximalen absoluten Höhe als Attribut ist deshalb sinnvoll, weil mittels dieser Attribute in einfachen Viewern räumliche Selektionen ausgeführt werden können; eine mögliche Abfrage könnte wie folgt lauten:

„Selektiere alle Straßen oberhalb von 500 m Höhe“.

Zum anderen wird für jedes Objekt die Fläche berechnet und im Attribut Flaecheninhalt abgespeichert. Dies kann dann sinnvoll sein, wenn man beispielsweise für Bauarbeiten an Straßen wissen muss, wie groß die Oberfläche eines Straßenabschnitts ist.
6 Austausch der mit dem 3Dfier erzeugten Objektarten

6.1 Gebäude

Für das dreidimensionale Landschaftsmodell sollen die original LoD2-Gebäudemodelle, die vom LDBV und vom LGL bereitgestellt wurden (siehe Projektphase 1), genutzt werden. Da für die Anwendung des 3Dfiers dennoch zunächst eine Tessellation vorliegen muss, müssen die mittels des 3Dfiers erstellten Klötzenmodelle im Nachgang durch die LoD2-Gebäudemodelle ausgetauscht werden.

6.2 Wald

Nach Absprache mit den Auftraggebern sollte statt der durch den 3Dfier erzeugten Vegetationsobjekte (beispielhaftes Ergebnis siehe untere Abbildung) die Waldfläche besser lediglich über das Gelände gebogen werden. Dies führt zur Reduzierung der Daten und damit zu Performancesteigerungen.
6.3 DGM

Durch den 3Dfier wird ausgehend von den 2D-Polygonen Terrain (dies entspricht den vorhandenen Lücken in den aufbereiteten 2D-Daten) ein neues DGM erzeugt. Da sowohl für das LDBV, als auch für das LGL originale DGM-Daten vorliegen, sollte statt des erzeugten Terrains das originale DGM genutzt werden.

6.3.1 Ausgangsdaten

6.3.1.1 LDBV

Die LDBV-Daten liegen im g01dgm-Format in einer Kachelgröße von 2x2 km bzw. 0,5x0,5 km vor und haben eine Auflösung von 1m pro Rasterzelle. Das Bezugssystem ist das DHDN_3_Degree_Gauss_Zone_4 (EPSG:31468) (zum Zeitpunkt der Datenlieferung – 2016 – lagen diese noch nicht in UTM vor).

6.3.1.2 LGL

Die LGL-Daten liegen im 1m-Format in einer Kachelgröße von 1x1 km vor und haben eine Auflösung von 1m pro Rasterzelle. Das Bezugssystem ist das DHDN_3_Degree_Gauss_Zone_3 (EPSG:31467) (vgl. Abschlussbericht zur 1. Phase).

6.3.2 Bearbeitung

Für die Erzeugung des Terrains, das in Cesium visualisiert wird, wird der sog. Cesium Terrain Builder genutzt. Hierfür müssen zunächst einige Vorarbeiten an den Input-Daten geleistet werden:

1) Das ursprünglich vorliegende ASCII-XYZ-Format wird zunächst in das ERDAS-IMAGE-Format (.img) konvertiert.

3) Anschließend werden die beiden Rasterdateien des LDBV und des LGL mittels eines Raster-Mosaickers zu einer gemeinsamen Datei zusammengeführt und in ArcGIS mittels einer Maske (in diesem Fall das festgelegte Testgebiet) extrahiert.
Als Ergebnis erhält man die unten dargestellte img-Datei mit Höhen zwischen 395m und 1030m.

Als Software wird für die Berechnung des Geländes auf die sog. Geospatial Data Abstraction Library (GDAL) zurückgegriffen und die folgenden Werkzeuge benutzt:

- `gdalbuildvrt` → dies wird auf den Input-Datensatz angewendet
- `ctb-tile` → dies wird auf die erzeugte vrt-Datei angewendet

Ausgangsdatei ist demnach die .img-Datei. Im Kommandofenster (cmd) erfolgt nun die eigentliche Mosaikerzeugung. Hierfür ist es zunächst erforderlich, eine Textdatei anzulegen (z.B. 'List.txt').

Anschließend wird die VRT (Virtual Raster Tile) -Datei mittels des folgenden cmd-Befehls erstellt:

```
gdalbuildvrt terrain_DSM.vrt -input_file_list List.txt
```

Nun kann die eigentliche Kachelung der einzelnen Zoom-Stufen erfolgen. In diesem Fall werden 19 verschiedene Zoom-Stufen berücksichtigt, wobei das Level ‘18’ am meisten Details des Geländes wiedergibt, ‘0’ dagegen teilt die Erde lediglich in zwei Teile. Der entsprechende Befehl (für das Zoom-Level ‘18’) sieht wie folgt aus:
Austausch der mit dem 3Dfier erzeugten Objektarten

"ctb-tile -s 18 -e 18 -c 4 terrain_DSM.vrt"

s: “start-zoom” → Zoom-Level, bei dem gestartet wird (größer als End-Zoom-Level)
e: “end-zoom” → Zoom-Level, bei dem geendet wird (geringer als Start-Zoom-Level und ≥ 0)
c: “thread count” → Anzahl der CPU-Threads, die für die Kachel-Erzeugung gebraucht werden

6.3.3 Ergebnis

Screenshots aus dem 3D-WebClient zeigen anhand beispielhafter Ausschnitte, wie das Digitale Geländemodell in Cesium dargestellt wird.
7 Qualitätsbewertung

7.1 Umgang mit Inkonsistenzen in Eingangsdaten

7.1.1 Allgemein

7.1.2 Problematisch

7.1.2.1 Nicht freigestellte Objekte

Nicht freigestellte Objekte in 2D (z.B. Straße in Wald) führt zu Überlappungen, im schlimmsten Fall zu Triangulierungsfehlern. Die korrekte Aufbereitung der 2D-Ausgangsdaten im Sinne der vom 3dfier vorgegebenen Randbedingungen ist daher essentiell für die Ergebnisqualität.

7.1.2.2 Lücken in Punktfolge

Lücken in der Punktfolge führen zu Fehlern im 3D-DLM.

Die Lücke in der Punktfolge unterhalb der Brücke führt zu einem Knick in der Straße.

7.1.3 Positiv

7.1.3.1 Inkonsistenzen in 2D-Ausgangsdaten

Inkonsistenzen in den 2D-Ausgangsdaten (Polygone) werden vom 3Dfier soweit möglich korrigiert, z.B. Multipolygone oder Selbstüberschneidungen (siehe 4.2.2.2).

7.1.3.2 Lücken im 2D-Datenbestand

Der 3Dfier toleriert bei der 3D-DLM-Erzeugung Lücken im 2D-Datenbestand; es kommt nicht zum Abbruch. Das Ergebnis beinhaltet aber naturgemäß entsprechende Lücken im 3D-DLM.

7.2 Verwendung von unklassifizierten Punktwolken

Für das Tool ‘3Dfier’ ist die Verwendung eines (unklassifizierten) bDOMs zwar technisch möglich, aber faktisch nicht sinnvoll. Hierzu ein Auszug aus README zum 3Dfier:

We expect the LAS/LAZ to be classified according to the ASPRS Standard LiDAR Point Classes v1.4 (Table 4.9 of this PDF), and at a minimum these should be defined:

- 0-1: Created, never classified and/or unclassified
- 2: Ground
- 3-5: Vegetation

If the vegetation is not classified or not filtered out, then buildings might be taller and there might be artefacts in the terrain.

Das heißt vereinfacht: Bodenpunkte **MÜSSEN** vorhanden sein, Vegetation **SOLLTE** vorhanden sein.

So zieht zum Beispiel die Klasse Road die Höheninformation nur aus den als Bodenpunkt (Class 2: Ground) klassifizierten Punkten. Wurden keine Bodenpunkte klassifiziert, werden die Objekte dieser Klasse mit der Höhe 0 versehen:

Umsetzung mit LIDAR-Punktwolke
Umsetzung mit bDOM-Punktwolke

7.3 Betrachtung der einzelnen Objektarten

Die im Folgenden aufgeführten Untersuchungen hinsichtlich der Qualität der mit dem 3Dfier erzeugten Objekte wurden auf unterschiedliche Weise vorgenommen:

- Zum einen erfolgte eine manuelle Sichtung der Daten. Dabei wurden die Objekte sowohl einzeln, als auch in Interaktion mit anderen benachbarten Objektarten betrachtet und hinsichtlich Auffälligkeiten untersucht.
 → Diese Art der Betrachtung wurde für die Objektarten BUILDING, BRIDGE sowie ROAD vorgenommen (siehe 7.3.1, 7.3.2 und 7.3.3).

- Zum anderen erfolgte eine statistische Auswertung. Dabei wurden die Normalenvektoren der erzeugten Flächen betrachtet.
 → Diese Art der Betrachtung wurde für die Objektart WATER vorgenommen (siehe 7.3.4).

Detaillierte Beschreibungen sowie die Resultate dieser Untersuchungen sind in den folgenden Kapiteln aufgeführt.

7.3.1 BUILDING

7.3.1.1 Grundlage

Grundlage für die Umsetzung ist die für die amtliche LoD-Erzeugung verwendeten Grundrisse (ALKIS) (siehe auch 3.3.1 BUILDING). Die Erzeugung im Rahmen des 3Dfiers ist wegen Nachbarschaftsbeziehungen notwendig und erfolgt immer in LoD1.
Im Postprozess werden dann die erzeugten LoD1-Modelle durch amtliche LoD2-Modelle ersetzt (siehe 6.1 Gebäude).

7.3.1.2 Lage

7.3.1.3 Bodenhöhe

Für die nahtlose Integration des amtlichen 3D-Modells in das umgebende Gelände ist die Verwendung des amtlichen DGMs Voraussetzung (siehe 6.3 DGM).
7.3.2 BRIDGE

Im Folgenden werden beispielhaft bei der Umsetzung aufgetretene Probleme beschrieben. Wo möglich und sinnvoll, werden Vorschläge zur Vermeidung dieser Probleme aufgeführt.

An dieser Stelle sei darauf hingewiesen, dass es sich bei den 2D-ATKIS-Daten generell um generalisierte Daten handelt, die von der tatsächlichen Lage unter Umständen abweichen können und somit nicht mit dem genauen DGM konsistent sind.

Diese Tatsache führt zu einigen der im Folgenden aufgeführten Probleme. So müssten u.a. Widerlager der Brücken auf das DGM angepasst werden, aber beispielsweise auch die Straßenachse nachgebessert werden (z.B. mittels True Orthophoto oder DGM) (vgl. Kap. 7.3.3.4). Auch die Umringe der ATKIS-Daten (beispielsweise für die Repräsentation von Seen) resultieren aus Generalisierungen und passen somit nicht exakt zum DGM (vgl. Kap. 7.3.4).

7.3.2.1 Einheitliche Höhe

Brücken werden immer auf einer einheitlichen Höhe modelliert (waagerecht). Dies entspricht häufig nicht der Realität und führt zu einem Höhenversatz beim Anschluss an die angrenzenden Verkehrsobjekte.

Offensichtlich wird bei der Objekterzeugung nicht die mittlere Höhe der über dem 2D-Brückenobjekt liegenden Punkte verwendet, sondern die Höhe einer Seite angehalten. Sinnvoller wäre hier zumindest eine lineare Interpolation entlang der Brückenachse unter Verwendung der ermittelten Höhen an beiden Brückenseiten.
7.3.2.2 Triangulationsprobleme

7.3.2.2.1 DGM statt Bodenpunkte
Generell können Triangulationsprobleme durch die Verwendung des DGMs statt der Bodenpunkte aus der Punktwolke minimiert werden.

Umsetzung mit LIDAR-Bodenpunkten:

Umsetzung nach Austausch der Bodenpunkte durch die entsprechenden Punkte aus dem DGM:
7.3.2.2 Lückeneinlose 2D-Informationen

Neben den geschlossenen 3D-Informationen aus Punktwolke und DGM sind ebenso die lückenenlosen und überlappungsfreien 2D-Informationen entscheidend für eine saubere Umsetzung von Brücken. Andernfalls entstehen auch hier Triangulationsfehler, wie z.B. Lücken im 3D-DLM. Die folgenden Abbildungen illustrieren diesen Sachverhalt beispielhaft:

1. Lückenhafte 2D-Daten ergeben 'Löcher' im Gelände

Nach Korrektur sind diese Löcher beseitigt:

Vorher (fehlerhafte Triangulation als weiße Flächen erkennbar)
Korrigiert

2. Werden die Bodenpunkte durch Punkte aus dem DGM ersetzt (vgl. 7.3.2.2.1), verschwindet der Straßenknick unter der Brücke:
Aber:
Bei sauberer Bereinigung der 2D-Daten von Wald und Gelände (keine Überlappung von Wald im Straßenbereich / Brücke) entstehen neue Triangulierungsprobleme (erneut Löcher im 3D-DLM).

Hierfür ist die Ursache noch unklar.

7.3.2.3 Brücken queren Brücken
Lieg Brücken über Brücken, so hat der 3Dfier Probleme bei der Erkennung der unterschiedlichen Höhen.

7.3.2.4 Brücken in dichter Vegetation
Trotz sauber freigestellter 2D-Daten überlappt das Terrainobjekt in 3D das Verkehrsobjekt. Dieser Effekt tritt insbesondere bei Vegetation in unmittelbarer Nähe von Verkehrsobjekten auf (dies liegt u.a. daran, dass die Lidar-Punktfolle u.U. in den Straßenraum ragt).
7.3.2.5 Einzelpolygone vereinigen
Polygone gleicher Objekt-ID sollten vor der Übergabe an den 3D-fier vereinigt werden, um Fehlerkennungen zu vermeiden.

7.3.2.6 Zusammenfassung und Fazit
Vor allem und gerade im Bereich von Brücken besteht eine hohe Sensibilität in Bezug auf die Ausgangsdaten. In vielen Fällen ist das vollautomatische Ergebnis aber bereits zufriedenstellend.

Die Lage der Brücken passt im Testgebiet zu anschließenden Verkehrsobjekten, so dass keine Lücken in X und Y zu den anschließenden Straßen entstehen.
Die Höhe der Brücken passt dagegen häufig nicht exakt zu den angrenzenden Straßenobjekten (siehe 7.3.2.1).

7.3.3 ROAD

Im Folgenden werden beispielhaft bei der Umsetzung aufgetretene Probleme beschrieben. Wo möglich und sinnvoll werden Vorschläge zur Vermeidung dieser Probleme aufgeführt.

7.3.3.1 Lücken im Punktdatenbestand

Liegen Lücken im Punktdatenbestand vor (z.B. unter Brücken) erfolgt eine unsaubere Interpolation der Höhe, welche zu in der Realität nicht vorhandenen Tälern und Kuppen im Straßenverlauf führen.
7.3.3.1 Lösungsvorschläge

3Dfier-Algorithmus

Eingangsdaten
Automatische Lückenfüllung z.B. durch Austausch der Bodenpunkte durch Punkte aus dem amtlichen DGM.

![Ebener Straßenverlauf nach Austausch der Bodenpunkte durch das DGM](image1)

7.3.3.2 Geringe Punktdichte
Bei geringer Punktdichte kommt es zu einer unruhigen Straßenoberfläche. Das semantische Wissen um eine ebene Straßenoberfläche kommt hier offensichtlich nicht oder nicht ausreichend gewichtet zum Tragen (siehe 4.3.1).

![Unsteter Straßenlauf bei verringerter Punktdichte (thinning 5)](image2)
7.3.3.3 Unterschiedliches Gefälle

Bei sich änderndem Gefälle entstehen Unstetigkeiten im Übergang zwischen den unterschiedlichen Steigungen. Bei geneigtem Straßenverlauf kommt es dann häufig zu einem unebenen Straßenverlauf durch die fehlerhafte Triangulation.

7.3.3.4 Neigungen im Straßenquerschnitt

Bei z.B. durch Lageversatz verursachten uneinheitlichen Höhen der auf der Straße liegenden Punkte kommt es fälschlicherweise zu Neigungen im Straßenquerschnitt. Straßen liegen dann beispielsweise geneigt an einer Böschung.
Außerdem ist für einen ebenen Straßenverlauf eine Pufferung der linienhaften 2D-Straßenelemente mit einer der Realität entsprechenden Breite elementar. Im unten abgebildeten Beispiel führen sowohl ein Lageversatz, als auch eine falsch angenommene Straßenbreite zu Folgeproblemen im 3D-DLM.

7.3.3.5 Enger Kurvenverlauf

Ein enger Kurvenverlauf führt ebenfalls zu Unstetigkeiten im Verlauf der Straßenoberfläche. Außerdem werden die Kurven aktuell zu grob wiedergegeben. Hier ist der Algorithmus zur Pufferung der 2D-Linien zu verfeinern (vgl. 3.3.3).
7.3.3.6 Unterscheidung der Verkehrswege

Für die Unterscheidung in der Visualisierung erfolgt im Rahmen eines Postprozesses eine Trennung der Verkehrstypen.

7.3.3.7 Zusammenfassung und Fazit

Zusammengefasst ergeben sich folgende Kriterien für eine Qualitätsverbesserung des resultierenden 3D-DLMs:

- Bodenpunkte der Punktwolke durch Informationen aus amtlichem DGM (z.B. DGM1) ersetzen
- Möglichst hohe Übereinstimmung in der Lage zwischen DLM und DGM
- Realistische Breiteninformation pro Abschnitt eines Verkehrsweges

Zufriedenstellende Ergebnisse werden aktuell erreicht bei:

- Ebenem oder leicht welligem Gelände
- Geradem oder nur leicht kurvigem Achsverlauf
- Daten entsprechen möglichst weitgehend oben genannten Kriterien zur Qualitätsverbesserung
- Realistische Darstellung bei Übersichtsbetrachtung

Grobe Fehler beschränken sich im Wesentlichen auf Kreuzungsbereiche und Über-/Unterführungen.
7.3.4 WATER

Im Folgenden werden beispielhaft bei der Umsetzung aufgetretene Probleme beschrieben. Hierbei wird zwischen den Stehenden Gewässern und den Fließgewässern unterschieden.

7.3.4.1 Stehendes Gewässer

Es gilt die Annahme, dass die Neigung der stehenden Gewässer 0 sein muss. Überprüfen lässt sich dies auch dadurch, dass die Attribute min_Hoehe und max_Hoehe den gleichen Wert haben müssen. Das folgende selektierte Gewässer-Objekt (siehe Abbildung) ist demnach eben und die Geometrie ist korrekt.

Betrachtet man alle stehenden Gewässer als fehlerhaft, die keine horizontale Fläche repräsentieren, so ergibt sich für die Daten des LDBV ein Prozentanteil von **19,8% der stehenden Gewässer**, die fehlerhaft sind; für die LGL-Daten sind dies **21,2%**.
7.3.4.1.1 Fehlerhafte Stehende Gewässer
Im Folgenden sei beispielhaft ein fehlerhaftes stehendes Gewässer dargestellt.

<table>
<thead>
<tr>
<th>GMLID</th>
<th>DEBVoBDLMgH003kZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landeskennung</td>
<td>BY</td>
</tr>
<tr>
<td>Modellartenkennung</td>
<td>Basis-DLM#DTK25</td>
</tr>
<tr>
<td>class</td>
<td>1080</td>
</tr>
<tr>
<td>Objekter_text</td>
<td>AX_StehendesGewasser</td>
</tr>
<tr>
<td>Objekter</td>
<td>44006</td>
</tr>
<tr>
<td>Widmung</td>
<td>1340</td>
</tr>
<tr>
<td>hatDriekUntenExistiert</td>
<td>0</td>
</tr>
<tr>
<td>min_Hoehe</td>
<td>766.65</td>
</tr>
<tr>
<td>max_Hoehe</td>
<td>780.47</td>
</tr>
<tr>
<td>Flächeninhalt</td>
<td>3050.2</td>
</tr>
</tbody>
</table>

7.3.4.2 Fließgewässer
Für die Qualitätsbewertung der Fließgewässer gilt die Annahme, dass die Flächennormalen angrenzender Objekte in etwa (auf 5 Grad genau) in die gleiche Richtung orientiert sein müssen. Ist dies nicht der Fall, werden die Objekte als fehlerhaft bewertet.

Mit der oben aufgestellten Annahme ergibt sich somit für die Daten des LDBV ein Prozentanteil von 58% der Fließgewässer, die fehlerhaft sind. Für die LGL-Daten sind es 64,3%.

Der Grund hierfür kann oft sehr ähnlich zu den auftretenden Fehlern bei den Straßen sein.
7.3.4.2.1 Neigungen im Gewässerquerschnitt
Wie bereits bei den Straßen erläutert, erfolgt die Pufferung der linienhaft vorliegenden Gewässerachsen lediglich um Standardwerte (es liegen keine realen Flussbreiten vor). Zusätzlich kann es z.B. durch Lageversatz dazu führen, dass die Gewässerobjekte geneigt an einer Böschung liegen.

7.3.4.2.2 Falsche Höhenzuweisung
Vor allem im Datenbestand des LGL sind die ursprünglichen Gewässerachsen durch sehr viele kleine Abschnitte repräsentiert. Dadurch kann es zwischen den einzelnen Objekten zu starken Höhendifferenzen kommen. Dies sollte bereits in der Vorverarbeitung der Daten berücksichtigt und verbessert werden.

7.3.4.2.3 Positive Beispiele
Ein positives Beispiel für die Interaktion zwischen flächenhaft vorliegender Fließgewässer und Brücken zeigen die folgenden Abbildungen.
8 Bereitstellung der Ergebnisdaten

Abgesehen vom DGM wurden alle Daten als CityGML-Instanzdokumente erzeugt und mittels des CityGML-Importers in eine 3D City Database auf einem PostgreSQL DBMS (mit PostGIS) importiert. Nach Festlegen der BoundingBox und Anpassung diverser Einstellungen (z.B. Füllfarbe der Objekte) werden die Daten als COLLADA/glTF exportiert. Dieses Datenformat ist notwendig, um die Inhalte der Datenbank für eine Visualisierung in Cesium aufzubereiten.

Eine Anreicherung der Objekte um thematische Attribute erfolgt mittels des Spreadsheet-Exporters.

<table>
<thead>
<tr>
<th>Column's title</th>
<th>Column's content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landeskennung</td>
<td>CITYOBJECT_GENERICATTRIB/STRVAL [ATTRNAME=’landeskennung’]</td>
</tr>
<tr>
<td>Modellkennung</td>
<td>CITYOBJECT_GENERICATTRIB/STRVAL [ATTRNAME=’Modellkennung’]</td>
</tr>
<tr>
<td>Objektart_Text</td>
<td>CITYOBJECT_GENERICATTRIB/STRVAL [ATTRNAME=’Objektart_Text’]</td>
</tr>
<tr>
<td>Objektart</td>
<td>CITYOBJECT_GENERICATTRIB/INTVAL [ATTRNAME=’Objektart’]</td>
</tr>
<tr>
<td>Bauwerksfunktion</td>
<td>CITYOBJECT_GENERICATTRIB/INTVAL [ATTRNAME=’Bauwerksfunktion’]</td>
</tr>
<tr>
<td>Breite_Objekt</td>
<td>CITYOBJECT_GENERICATTRIB/REALVAL [ATTRNAME=’Breite_Objekt’]</td>
</tr>
<tr>
<td>Durchfahrtshoehe</td>
<td>CITYOBJECT_GENERICATTRIB/REALVAL [ATTRNAME=’Durchfahrtshoehe’]</td>
</tr>
</tbody>
</table>

Lädt man den WebClient⁶, erhält man folgende Ansicht:

⁶ Link zum WebClient:
https://www.3dcitydb.org/3dcitydb-web-map-tum/2.3/index.html?config=https%3A%2F%2Fdocs.google.com%2Fsheets%2Fd%2Ft%2F9eDZ4jW2BMt7DPq9uPlw4zSAK-XwPu-XmQSZTc%2FeFedi%3Fusp%3Ddrivesdk&gmlid=DEBYBDLMgG0002k8&shadows=false&terrainShadows=NaN&latitude=47.61919281940638&longitude=9.832996145765712&height=1130.905755747691&heading=5.050817302078285&pitch=-34.408944040537&roll=0.02050171162506003
… mit den folgenden thematischen Attributen für ein beliebig ausgewähltes Straßenobjekt:

Mittels dieser Attribute lassen sich nun Abfragen und Analysen durchführen.

Beispielsweise sind in unterer Abbildung alle Gebäude farbig hervorgehoben, die als Dachform ein Flachdach haben (roofType = 1000).
9 Zusammenfassung & Ausblick

3D-Stadt- und Landschaftsmodelle werden häufig als reine graphische oder geometrische Modelle definiert; dabei werden die semantischen Aspekte oft vernachlässigt. Dies hat zur Folge, dass diese Modelle fast ausschließlich für Visualisierungszwecke verwendet werden können, nicht jedoch für thematische Abfragen, Analyseaufgaben oder Simulationen. Für viele Anwendungsszenarien sind aber genau diese semantischen Informationen von enormer Wichtigkeit.

Aus diesem Grund wird im Projekt "3D-DLM" jedes erzeugte Objekt des digitalen Landschaftsmodells semantisch angereichert. Diese sind dadurch sowohl thematisch, als auch räumlich selektierbar und abfragbar (siehe erzeugter 3D-WebClient (Link: S. 57) / siehe Kap. 2 'Semantisches 3D-Landschaftsmodell').

Neben den bereits erwähnten Empfehlungen hinsichtlich der Ausgangsdaten, die bei Anwendung des 3Dfiers zu inhaltlichen Fehlern im dreidimensionalen Landschaftsmodell führen können, bestehen hinsichtlich der Erzeugung eines konsistenten semantischen 3D-DLMs weitere offene Forschungsfragen, auf die im Folgenden näher eingegangen werden soll:

- Für die Erzeugung eines konsistenten 3D-DLMs muss das Geländemodell dahingehend angepasst werden, dass darin enthaltene 3D-Objekte aus diesem entfernt werden müssen. Dies betrifft z.B. Brückenobjekte, die im DGM aktuell oft noch enthalten sind. Gerade im Hinblick auf den künftigen Ansatz der AdV, Brückenkörper bereits in 3D zu erfassen, spielt diese Thematik eine wichtige Rolle.

- Auch die Interaktion der erzeugten 3D-Objekte untereinander muss künftig näher untersucht werden. So muss beispielsweise gewährleistet sein, dass Straßen ohne Unterbrechung an die modellierten Brücken anschließen. Für die korrekte Ableitung von 3D-Modellen für Brückenbauwerke muss das Werkzeug 3difier zudem erweitert werden, um auch die Längsneigung von Brücken berücksichtigen zu können. Nur so kann eine korrekte Topologie sichergestellt werden, was beispielweise für Routingaufgaben essentiell ist.

- Die im Projekt angewandte Methode zur Repräsentation flächenhafter Objekte (z.B. Wald, Landwirtschaftliche Flächen) als aus Dreiecken zusammengesetzte Multisurfaces führt aufgrund der Hochauflösenden Punktwolken zu sehr großen Datenmengen. Hier sollten alternative Repräsentationsformen erforscht werden.

- Um das 3D-DLM gemäß den Anforderungen der Anwender weiterzuentwickeln sollten nicht zuletzt Tests in konkreten Anwendungsszenarien durchgeführt werden.
Literaturverzeichnis

<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Datum</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEIL, C.</td>
<td>Detaillierte Repräsentation des Straßenraums in 3D-Stadtmodellen. Masterarbeit, Lehrstuhl für Geoinformatik, Technische Universität München.</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>COMMANDEUR, T. & LEDOUX, H.</td>
<td>3Dfier: https://github.com/tudelft3d/3dfier</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>KUNDE, F. & MARX C.</td>
<td>Abschlussbericht zum Projekt VoDLM3D. unveröffentlicht.</td>
<td>2015</td>
<td></td>
</tr>
</tbody>
</table>

RTGIS 3D-DLM