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Deep learning models are widely used in traffic forecast tasks and achieve high 

accuracy. However, the black-box nature of those models makes the results hard to be 

explained and trusted by users. On the one hand, the lack of interpretability and 

explainability makes machine learning developers not aware of how the model learns 

from the data. On the other hand, domain users need more explanations on using the 

model to gain a more insightful understanding of the real world. 

In recent years, the issues of interpretability and explainability in AI have gained 

more and more attention from researchers. Interpretability focuses on creating models 

whose internal workings are inherently understandable. Explainability aims to furnish 

post hoc insights into existing "black-box" models to elucidate their decision-making 

processes. Local explanations for a machine learning model are important for people to 

interpret its output. Techniques for explaining an ML model often involve a simpler 

surrogate model that yields interpretable information, such as feature importance scores. 

However, these techniques suffer from an inherent fidelity-interpretability trade-off due 

to their use of a simpler model for generating explanations.  

Highly interpretable explanations may end up approximating too much and be 

inconsistent with the original ML model (low fidelity), while high-fidelity explanations 

may be as complex as the original ML model and thus less interpretable. To solve this 

dilemma, counterfactual explanations have been introduced. It maintains consistency 

with the original machine learning model, offering arguably interpretable insights. 

Counterfactual explanations reveal the minimal changes required in the original input 

features to alter the model's prediction, thus providing understanding without 

sacrificing fidelity or complexity. 

This study aims to leverage explainable AI to enhance the explainability and 

usability of the deep learning-based traffic forecast model. Specifically, the goal is to 

elucidate the relationships between various input features and their corresponding 

output predictions. The research aims of this study are summarized by the following 

overriding research questions: 

⚫ What is the impact of input variables on deep learning-based traffic forecast? 

⚫ How can we modify the input variables to achieve the desired prediction for 

various scenarios? 

This thesis present a comprehensive framework that utilizes counterfactual 

explanations for traffic forecasting and provides actionable insights through the 

proposed scenario-driven counterfactual explanations.  

The study first establishes a deep learning model to predict traffic speed based on 

various context features. The Attribute Augmented Spatial Temporal Graph 



Convolutional Neural Network model is built. Several context features were used for 

the prediction model, which includes static features and dynamic features. Static 

features are location-based, which means they generally only vary with regard to 

different road segments. The study includes nearby POI data for each road segment, 

speed limit data for each road segment, and lane configuration for each road segment. 

Particularly, the number of POIs includes the nearby gas station, charging station, 

parking lot, and restaurant. Dynamic features are time-based, indicating that they 

change over time. Calendar data, including day of the week, hour of the day, and 

weather condition data are included in this study. In this study, the traffic forecast model 

is built to predict the future traffic speed for each of the road segments on the traffic 

graph.  

The core focus lies in the generation of counterfactual explanations to illuminate 

how alterations in these variables could affect predicted outcomes, thereby enhancing 

the model's transparency. This study considers the task of generating counterfactual 

explanations as a multi-objective optimization problem. To guide the search for 

counterfactuals, four key quantitative metrics were employed, which are validity, 

proximity, sparsity, and plausibility. 

⚫ Validity: A counterfactual is valid if it produces a predicted outcome closely 

approximating the target speed. 

⚫ Proximity: The ideal counterfactual should differ minimally from the original 

feature set, thereby ensuring that the changes suggested are modest and realistic. 

⚫ Sparsity: A counterfactual gains in feasibility when the number of altered 

features is minimized. 

⚫ Plausibility: For a counterfactual explanation to be considered plausible, it 

should be close to the nearest observed data points. 

It is important to recognize that a counterfactual example, while perhaps optimal in 

feature space, may not be practically feasible due to real-world constraints. Therefore, 

users have the flexibility to specify constraints on feature manipulation, including range 

constraints and changeable variables. Range constraints define feasible ranges for each 

feature. For instance, a constraint might specify that "Speed limit on the road should be 

larger than 30 km/h." Changeable variables define which specific variables can be 

altered in the search for a counterfactual explanation. 

The presence of multiple objectives in a problem gives rise to a set of optimal 

solutions, instead of a single optimal solution. Without additional information, it's hard 

to say one of the solutions is better than the other. To efficiently address this problem, 

the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was introduced as a fast 

and elitist multi-objective evolutionary algorithm. In the context of this study, the 

performance of a counterfactual is represented by its vector of objective values, validity, 

proximity, sparsity, and plausibility, corresponding to the criteria outlined in the 

previous section. Lower objective values signify better counterfactuals. 

After the generation and selection of counterfactual explanations, a comprehensive 

evaluation is essential to assess their performance and broader impact. It is crucial to 

verify that the counterfactual explanations achieve the desired speed improvement for 

the targeted road segment. Beyond the targeted segment, it is also necessary to ensure 



that localized changes don't negatively impact the speed of other road segments within 

the entire road network. This thesis involves the generation of counterfactual 

explanations for different spatial settings, under different time periods.  

This study also delves into the practical implications of these features by integrating 

user-defined constraints to generate targeted counterfactual explanations. Two distinct 

methods for scenario constraints, directional and weighting constraints, are proposed to 

tailor counterfactual explanations to specific use cases. These tailored explanations 

benefit machine learning practitioners who aim to understand the model's learning 

mechanisms and domain experts who seek actionable insights for real-world 

applications. For directional constraints, users have the option to specify the direction, 

either increase or decrease, in which they would like specific features to move. For 

weighting constraints, users can assign weights to individual features to prioritize their 

importance during the counterfactual generation process. 

 Throughout the experiments, there are some significant patterns in the distribution 

of objectives. First, there appears to be a negative correlation between the validity loss 

and the proximity loss, which suggests that as counterfactual predictions approach the 

target speed more closely, the divergence of the generated counterfactual features from 

the original features increases. Second, validity loss and plausibility loss are negatively 

correlated. This implies that when the counterfactual predictions come closer to the 

target speed, they tend to deviate more from plausible, observed points in the feature 

space. Third, a positive correlation between proximity loss and plausibility loss. 

Generally, a greater proximity loss is accompanied by a larger plausibility loss. 

However, an interesting cluster of points exists in the bottom-right corner of this figure. 

These points show that there are counterfactual explanations that differ substantially 

from the original features but still maintain a close distance to overall observed data 

points. 

Our findings underscore the integral relationship between traffic speed predictions 

and the spatial-temporal dynamics of road settings, revealing that varied patterns 

emerge across suburban and urban roads, as well as between weekdays and weekends.  

Impact of contextual features on highway traffic: Counterfactual explanations 

generated for highway road segments failed to yield improvements in speed. This 

suggests that the static features investigated in this study, namely the number of POI, 

the number of lanes, and speed limits, do not substantially influence traffic patterns on 

highways within the scope of this road network. This outcome can be interpreted that 

highway speeds are primarily influenced by dynamic factors such as weather conditions 

and events, rather than by the static features examined here. In the case of nearby POIs, 

their presence appears to have negligible impact on highway speeds, as highways 

generally lack direct access to these facilities. Regarding the number of lanes and speed 

limits, isolated adjustments to these parameters on specific highway segments seem 

ineffective at altering overall speed. This is likely because highway traffic pattern is 

highly dependent on inflow conditions; altering the attributes of only a section of the 

highway would not significantly impact the overall traffic demand or the carrying 

capacity of the entire highway network. Therefore, it won't be able to enhance the speed 

in this situation. 



Impact of contextual features on suburban road: When aiming to increase 

speeds on suburban road segments, counterfactual explanations suggest an increase in 

the number of POIs nearby. This is because the model associates road segments with a 

higher density of nearby POIs with lower levels of traffic congestion. The geographical 

location of a suburban road appears to significantly influence its traffic patterns. For 

instance, suburban roads adjacent to residential neighborhoods may experience lighter 

traffic but with more nearby POIs. In contrast, other suburban roads might be part of 

arterial routes and, despite having fewer nearby POIs, experience higher traffic volumes, 

leading to increased congestion or reduced speeds. Therefore, if the goal is to improve 

speeds on specific suburban roads, the model recommends increasing the number of 

nearby POIs. This alteration aims to make these road segments contextually similar to 

quieter, residential suburban roads, where lower traffic volumes and less congestion are 

observed. With regard to the number of lanes, the model does not suggest any 

significant modification pattern, except for the weekday afternoons, when the original 

traffic is the most congested and experiences the lowest speed. During these hours, the 

counterfactual explanations recommend reducing the number of lanes. Specifically, by 

reducing the number of lanes at the beginning of the road segment, less traffic would 

be able to enter the road segment, leading to more fluid traffic flow. Therefore, it can 

alleviate congestion and result in higher speeds. During weekends, the counterfactual 

explanations did not recommend alterations to the speed limit. This suggests that speed 

limits are not a significant factor affecting suburban road traffic during these times. 

Impact of contextual features on urban road: In contrast to the suburban road, 

when targeting to increase speeds on urban road segments, counterfactual explanations 

suggest a decrease in the number of POIs nearby. This discrepancy between urban and 

suburban roads could be interpreted in two ways. Firstly, it reflects the inherently 

different traffic patterns between suburban and urban settings. Secondly, it's important 

to note that the initial number of POIs near the studied urban road segments is already 

quite high. Unlike in suburban areas where an increase in POIs seems to alleviate 

congestion, urban roads appear to benefit from a reduction in POIs, presumably because 

fewer attractions would lead to less traffic. Interestingly, an exception arises during 

weekday afternoons, where the counterfactual explanations do not recommend a 

reduction in the number of POIs for urban roads. This could be because, during these 

peak hours, the number of POIs does not have a significant influence on the speed of 

traffic on urban roads. 

The use of deep learning models, coupled with Counterfactual Explanations, 

provides a powerful combination for uncovering complex relationships between 

variables. These relationships may be subtle or intricate enough for humans to notice, 

thus highlighting the novel capabilities of explainable AI and deep learning in data 

analysis. However, the efficacy of this approach is bound by certain limitations. 

Primarily, the model's predictive and interpretative strengths are dependent on the 

quality and diversity of the training data. Like all the data-driven methods, a dataset 

lacking in variability may limit the model's generalizability, resulting in 

recommendations that are not universally applicable. In the context of this study, a 

noteworthy limitation lies in the restricted exploration of different road graphs and a 



limited set of contextual features. This narrow scope may influence the robustness of 

the generated counterfactuals and their applicability to other scenarios. One potential 

avenue for mitigating these limitations involves the incorporation of domain-specific 

knowledge into the data-driven models. This can enhance both the generalizability and 

reliability of the model's recommendations. In light of this, scenario-driven 

counterfactual explanations are proposed in this study.  

The experimental results, obtained by incorporating various scenario constraints 

into the counterfactual explanation generation process, are highly promising for several 

reasons. Firstly, all generated counterfactual explanations demonstrate reasonable 

validity and plausibility scores. This indicates that the method retains its efficacy even 

when additional constraints are applied, thereby affirming the feasibility and 

effectiveness of the approaches proposed in this study. Secondly, some constraints 

facilitate more efficient counterfactual generation. On the one hand, the collection of 

generated Counterfactual Explanations generally exhibits lower validity loss, implying 

enhanced performance in aligning the predicted speeds with target speeds. On the other 

hand, underweighting constraints, not only do the colors in the set of CFEs become 

more vibrant, but the scatter points also converge within a smaller area. This indicates 

increased efficiency after adding the scenario constraint, as the algorithm is more adept 

at identifying optimal counterfactuals within a constrained search space. Overall, the 

integration of user-defined prior knowledge into post-hoc explanations has proven to 

be invaluable. This not only addresses the initial research questions posed but also has 

profound implications for future work in the field of Explainable AI. 

While this work demonstrates that scenario-driven counterfactual explanations 

offer significant benefits in the context studied, a key question that remains is how to 

ensure the practical utility and broader applicability of these methods in real-world 

settings. In this study, the quality of counterfactual explanations is solely evaluated 

based on objective metrics such as proximity and plausibility loss. We make the 

assumption that lower scores on these metrics indicate that implementing the 

counterfactual features in practice would be easier and more feasible. However, real-

world applications often prove to be far more complex and challenging. To bridge this 

gap, future research should focus on collaborating with domain experts, such as urban 

planners, to gain insights into the actual challenges and constraints involved in 

modifying contextual settings. 

 

In conclusion, the thesis introduces a comprehensive framework that advances the 

use of counterfactual explanations in spatio-temporal prediction tasks, effectively 

bridging the gap between theoretical understanding of models and their practical 

implications for actionable insights. In this study, a deep learning-based traffic forecast 

model was trained at first, using the state-of-the-art architecture, attribute augmented 

spatiotemporal graph convolutional networks. Subsequently, we generated diverse sets 

of counterfactual explanations by targeting various spatial and temporal settings. 

On the one hand, by suggesting minimal alterations to input features, 

counterfactual explanations enhance our understanding of the model's behavior and 

elucidate the role of various contextual variables in deep learning-based traffic 



forecasting. This provides invaluable insights for AI practitioners, aiding in a deeper 

comprehension of what the model has learned from the data. More specifically, by 

examining a variety of spatial settings—such as suburban roads, urban roads, and 

highways, as well as different time slots, this study reveals that the impact of static 

contextual features on traffic speed is influenced by distinct spatial and temporal 

conditions.  

On the other hand, this study advances the field by introducing scenario-driven 

counterfactual explanations, which offer domain experts like urban planners actionable 

and validated recommendations tailored to specific scenarios. By integrating user-

defined constraints into our framework, we can provide nuanced insights that are 

directly applicable to a range of real-world conditions. Specifically, it introduces two 

methods for incorporating these scenario constraints: directional and weighting 

constraints. Both approaches effectively align the generated counterfactual 

explanations with users' prior knowledge and expectations, thereby making the search 

for optimal solutions more efficient. Importantly, we observed that some scenarios, 

particularly those incorporating weighting constraints, expedited the generation process 

and yielded more precise and useful CFEs. This is manifested through a more focused 

distribution of CFEs, indicating a clearer pathway for the algorithm to identify optimal 

counterfactual conditions. 

The results indicate that counterfactual explanations can be useful in understanding 

the underlying patterns affecting traffic speed, showing potential for future applications 

in spatial-temporal predictive tasks. However, the study also reveals limitations 

concerning the model's geographical and feature-specific generalizability, suggesting 

avenues for future research. 

 

 


